Mid-Semestral Exam Algebra-I B. Math - First year 2014-2015

Time: 3 hrs Max score: 100

Answer all questions.

(1) State true or false. Justify your answers.

(a) If G is a finite group with normal subgroups N_1 and N_2 such that $N_1 \cong N_2$, then $G/N_1 \cong G/N_2$.

(b) $Z(S_n)$, the centre of the symmetric group of degree n, is trivial for $n \geq 3$.

(c) If G/Z(G) is cyclic, then G is abelian.

(d) Any abelian group of order 21 is cyclic.

(e) Any element in S_n $n \ge 2$ can be written as a product of transpositions of the form $(1 \ k)$ where k = 2, ..., n. (5+5+5+5+5)

(2) Investigate the group generated by the following 2×2 matrices with complex entries. Find the order of the group, normal subgroups and quotients.

$$A = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} \text{ and } B = \begin{bmatrix} i & 0 \\ 0 & -i \end{bmatrix}$$
(15)

- (3) (a) Let G be a cyclic group of finite order n and let m be a divisor of n. Show that G has a unique subgroup of order m.
 (b) Show that the multiplicative group (Z/2ⁿZ)[×], of all multiplicative inverses of Z/2ⁿZ, is not cyclic for any n ≥ 3. (7+8)
- (4) Let D_{2n} be the dihedral group of order 2n. Show that (a) $Z(D_{2n}) = \{1\}$ if n is odd
 - (b) $Z(D_{2n}) = \{1, r^k\}$ if n = 2k. (15)
- (5) Let $GL_2(\mathbb{R})$ denote the multiplicative group of all 2×2 invertible matrices over \mathbb{R} . Consider the multiplicative action of $GL_2(\mathbb{R})$ on \mathbb{R}^2 .

(i) Describe the orbit of this action containing the vector
$$\begin{bmatrix} 0\\0 \end{bmatrix} \in \mathbb{R}^2$$
.
(ii) Describe the other orbits of this action. (10)

(6) (i) Let G be a group and let H be a subgroup of G. Consider the action of G on the set X of all left cosets of H in G by left multiplication. Determine the kernel of the action. Show that the kernel is the largest normal subgroup of G contained in H.

(ii) Prove that if H has finite index n, then there is a normal subgroup K of G with $K \subseteq H$ and $|G:K| \le n!$. (10+10)

 $\mathbf{2}$